
Striving for Author-Friendly Procedural Dialogue Generation
Paper

Jonathan Lessard
Concordia University

Montréal, Canada
jonathan.lessard@concordia.ca

Etienne Brunelle-Leclerc
Concordia University

Montréal, Canada
mobbex@gmail.com

Timothy Go�schalk
Concordia University

Montréal, Canada
tim.go�s@gmail.com

Marc-Antoine Je�é-Léger
Concordia University

Montréal, Canada
ma je�eleger@hotmail.com

Odile Prouveur
Université de Montréal

Montréal, Canada
odile.prouveur@gmail.com

Christopher Tan
Concordia University

Montréal, Canada
chrisvtan@gmail.com

ABSTRACT
�is paper reports on an ongoing a�empt to develop an author-
friendly approach to procedural game dialogue generation. Various
a�ordances of the experimental authoring tool Expressionist are
appropriated to allow non-computer scientist authors to design
virtual characters’ discourse and reasoning potential. �e paper
describes how the Hammurabi game project makes use of metadata-
driven context free grammars to author virtual characters that can
generate not only discourse but also context-relevant decisions. �e
author-friendliness and generativity of the approach is discussed.

CCS CONCEPTS
•Human-centered computing → Natural language interfaces;

KEYWORDS
Dialogue systems, text generation, narrative design, context-free
grammars, game design, game development
ACM Reference format:
Jonathan Lessard, Etienne Brunelle-Leclerc, Timothy Go�schalk, Marc-
Antoine Je�é-Léger, Odile Prouveur, and Christopher Tan. 2017. Striving
for Author-Friendly Procedural Dialogue Generation. In Proceedings of
FDG’17, Hyannis, MA, USA, August 14-17, 2017, 6 pages.
DOI: .1145/3102071.3116219

1 INTRODUCTION
As interactive media continue to grow in richness and complexity,
traditional methods of dialogue authoring for virtual characters
feel increasingly sti�ing. �e rigidity of pre-wri�en dialogue trees–
still the staple of non-playing character verbal interaction–are at
odds with the dynamism and emergence of deeply simulated game
worlds. In short, there are many reasons to wish for methods
to procedurally generate NPC dialogue that would be relevant to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
FDG’17, Hyannis, MA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5319-9/17/08. . .$15.00
DOI: .1145/3102071.3116219

emergent game-state conditions. �is paper reports on our ongoing
a�empt to do just this for Hammurabi, an experimental political
managements game, using Expressionist, a tool designed by Ryan et
al. [6] to author metadata-driven context-free grammars. �e pur-
pose of this paper is to expose and document the appropriation of a
state-of-the art albeit experimental process for dialogue generation
by a design team in the context of an applied project.

Promising new techniques are not always successful in the exact
terms that saw their development, but o�en in the unforeseen
context of the design space they’ve opened. Who would have
predicted that the popularity of ray-casting as a rendering technique
would be tied to the advent of a whole new computer game genre:
the �rst-person shooter? Although early ”tech demos” and later
”killer apps” are usually well documented, it is not so much the
case with the in-between moments: the messy, heuristic, empirical,
intuitive design process between the emergence of a new technique
and the stabilization of a dominant usage. We do not know if
Expressionist and the techniques it embodies will ever ”catch on,”
but this is the time to document its early appropriation by designers
before it is ”blackboxed” and naturalized in what may eventually
seem to be the ”obvious” form.

In other words, this paper’s contribution is not so much in the
techniques presented, which are adapted from recent research, but
rather in the documentation and discussion of their ongoing ap-
propriation in the context of a game design exploration by ”naive”
developers (not specialists of computational linguistics). We think
this can help understand the a�ordances of these techniques and
feed back in their further development. To do this, we will �rst de-
scribe the project and its research context, as well as review brie�y
the main characteristics of Expressionist. We will then describe how
we have a this approach to dialogue generation in the context of
our own design and development pipeline partial to giving non-
computer scientist game writers as much agency as possible. We
will �nally share observations on these design choices a�er a year
of development.

2 A POLITICAL MANAGEMENT GAME
Hammurabi is developed in the context of a research-creation
project led by the LabLabLab and investigating how characters
in digital games and interactive �ction can act as ”subjective inter-
faces” to a simulated world [4]. Hammurabi, started in the summer
of 2016, is the project’s �rst prototype. It was designed as minimal

FDG’17, August 14-17, 2017, Hyannis, MA, USA J. Lessard et al.

test scenario for the implementation of NPCs capable of expressing
their views on the game’s current state of a�airs.

�e chosen design is a reinterpretation of the early mainframe
management game Hamurabi (sic) (Dyment 1968) (also known
as �e Sumer Game) which abstracts the government of antique
Babylon to three resources: people, grain and land; and four actions:
feeding people grain, sowing land with grain, buying land with
grain, and selling land for grain. Random factors alter the e�ects
of these decisions, like the varying quality of harvests and the
multiple catastrophes that can plague your kingdom, its people
and its resources. �e game was simple enough for the code to �t
on one page [1] but its wide di�usion and numerous clones are
testaments to the interesting problems it o�ers.

�e original game is framed as a conversation between Ham-
murabi, king of Babylon (the player) and his steward: ”Hamurabi:
I beg to report to you, in year 1, 0 people starved, 5 came to the
city, population is now 100 […] How many acres do you wish to
buy?” [1] . We’ve decided to push further this early example of
character as interface by replacing the steward with three ”viziers,”
each with their personality and competences. Not only do they
report on what’s happening in the kingdom but also execute the
king’s orders on his behalf. �e player must assign each vizier to
one of three ministries: public service (feeding the population),
commerce (buying/selling land) and agriculture (sowing grain); and
then allocate them a budget. Whatever happens next is in the hands
of the viziers: they can do exactly as they are told or decide to keep
some grain for themselves.

To grain and land, we’ve added a third currency: public approval.
When viziers’ ministries do well, Hammurabi gets some ”credit,”
but they get even more from being in closer contact to the people.
�ey can also choose to use their own resources to ful�ll their o�ce
and acquire even more popularity. �is is how the management
game becomes political: the king must juggle his viziers in order to
make Babylon thrive while making sure none grows too popular
that they could overthrow him. �is is also how these characters
act as a ”subjective interface” to the game system: they have a
perspective (and an agenda) of their own, which modulates what
information they will choose to divulge to the king/player.

On each turn, viziers report on what they have accomplished
with the king’s money, and advise him on what he should be doing
next. �is is where text generation is necessary: while much simpler
than most management games, Hammurabi’s possibility space is
still too wide to manually write in advance advices and reports for
all its potential game states.

3 CONTEXT-FREE GRAMMARS WITH
MARKUP

Hammurabi’s technical problem can be framed as a need for natural-
language generation (NLG). However, the complexity of current
solutions in that �eld come in contradiction with other design and
development requirements for computer games and interactive �c-
tion. Characters such as the viziers in Hammurabi need to have a
recognizable ”voice,” their expression needs to re�ect their person-
ality. �is characterization is usually rendered through the cra� of
game writers and narrative designers. While they o�en augment

their scripts with some degree of computation, they cannot be ex-
pected to all acquire the level of expertise required to set-up and
customize fully automated NLG systems. Even ”simple” NLG sys-
tems such as SimpleNLG [2] can only claim that label in comparison
to the complexity of competing systems.

3.1 Expressionist
Expressionist is an authoring tool designed to o�er a mixed-initiative
alternative to fully automated NLG and fully wri�en content, one
that:

[…] maximally utilizes two complementary strengths
of humans and computers–human’s deep knowl-
edge of natural-language expressivity […] and a
computer’s capacity to e�ciently operate of proba-
bilities and large treelike control structures–while
simultaneously minimizing both entities’ huge de-
�ciencies in the converse [6].

Expressionist’s strategy is to ”combine the raw generative power
of context-free grammars (CFGs) […] with the expressive power of
free-text markup” [6]. In other words, writers can author dialogue
lines in which some parts can be replaced at run-time in respect
to the current game state (and recursively). For example, if it is
relevant for a character to talk about what they like, but that pref-
erence is not set in advance, an author could prepare the following
line:

I [[like verb]] [[something I like]].
For variation, [[like verb]] could be randomly replaced by either

”like”, ”adore” or ”enjoy”. However, a random pick will not do for
[[something I like]] as it should re�ect what is true in the current
context. �is is where Expressionist shines in its �exibility as
it allows every fragment to be arbitrarily tagged with metadata.
�ese tags will then o�er the criteria on the basis of which a speci�c
replacement will be chosen. In CFG terms, [[something I like]] is a
non-terminal symbol, meaning that it hasn’t been rendered in text
(terminal symbol) yet; it still needs to be ”expanded” according to a
”production rule” which could look like:

[[chicken]] [[skiing]]
�e trick here is that these two fragments are marked with

di�erent tags: ”LikesChicken” and ”LikesSkiing” and will only be
considered valid if these variables are currently set to true. If the
current character happens to like chicken, the system could make
a generation request to the grammar with the speci�cation that
”LikeChicken” is true, and obtain one of the following possible
outputs:

I like chicken
I adore chicken
I enjoy chicken

�e value of this system is the possibility of obtaining varied out-
puts while keeping control over what content is considered relevant
in the current context. Of course, authoring these ”stenciled” frag-
ments isn’t as straightforward as chaining dialogue trees (though
they also can be mind-bending) but it is far from inaccessible. Also,
authors have the leeway to navigate a large spectrum between very
variable, recursive templates, and fully wri�en lines which will
either be selected or not according to their tags.

Striving for Author-Friendly Procedural Dialogue Generation FDG’17, August 14-17, 2017, Hyannis, MA, USA

�e output of Expressionist is a JSON �le containing a ”grammar”–
a list of symbols (terminal and non-terminal), their a�ached tags,
and their production rules. �is �le needs to be interpreted by some
other program to generate actual text. In the terms of Expressionist’s
authors, this other module is called a ”productionist” and should be
tailored to the needs of the client application; especially in terms
of which kind of tags should be taken into account and how they
should be evaluated. Hammurabi’s productionist is embedded in its
Unity Engine project, allowing seamless integration with the other
aspects of the game.

In the following sections, we will detail how we have appro-
priated Expressionist’s logic for Hammurabi and our development
pipeline. We will discuss particularly how the game frames gram-
mars and how it handles tags.

4 GRAMMARS
4.1 Speaking grammars
In the Talk of the Town project, the initial application for which
Expressionist was developed [5], a single grammar was wri�en
to generate dialogue for every character in its simulated world.
�is does not necessarily mean that every character talks the same
way as tags can modulate variations in output in respect to game-
tracked variables such as personality traits. However, this single-
grammar approach poses problems in the context of larger teams.
Since context-free grammars are still very uncommon in game
development, there are no established work�ows that would allow
someone to easily understand someone else’s authoring logic. �e
fact that almost all potential game writers are new to this concept
doesn’t help, of course. Also, Expressionist is not yet designed for
multiple user collaboration which makes collective editing of a
JSON �le quite risky.

While Talk of the Town is populated with a great number of
simulation-generated people, Hammurabi’s cast of characters is
limited to a handful of advisors with set personalities. In this con-
text, we thought relevant to think of each grammar as the voice of
a single character; and a�ached to a single author. �is means each
author can ”design” how their character expresses themselves ex-
actly how they see �t, as long as everyone follows basic guidelines
regarding how the grammar will be interpreted by the productionist
module. �is a�ords leeway for authors to write their character,
de�ning how they talk and how they respond to speci�c game
states.

As an example, here are partial report generations from three
di�erent advisors expressing their views on similar game states:

-Long story short, a fat bunch of’em starved, par-
don the pun. I’d tell you how many but… y’a know,
numbers, me, that’s really never gonna happen.

-Your majesty, our population isn’t going to make
it if we keep neglecting it like this.

-Feeding people is going to be di�cult since lo-
custs ate our grain. Despite the crisis, I fed them.
Just not enough… the Gods are doing this because
you are a prick.

4.2 �inking grammars
In Hammurabi, NPCs do not only speak di�erently, they also think
di�erently. Some will be more loyal, others more opportunistic,
prone to stealing and lying. In Talk of the Town, systemic character
traits and decisions are managed by the simulation and the dialogue
generation acts as an expression of these underlying processes.
In our perspective of giving maximum agency to game writers,
we realized that the metadata-driven context-free grammars of
Expressionist actually a�ord su�cient computational sophistication
for authors to script their characters’ decision making processes
alongside their expression scripts.

In other words, the live interplay of context-free grammars’
(CFGs) generativity restricted by their associated tags can lead not
only to the expression of game-state relevant sentences but also
to on-line decisions. For example, if a vizier is reporting on a very
good harvest, that same vizier could at the same time ”realize” that
this is a great time to steal some grain for themselves with li�le
chances of anyone noticing. Consequently, that vizier could actually
report a moderate crop, covering for the fact that some grain was
diverted along the way. �is is done by using tags the other way
around: not as conditions in the selection of text fragments, but as
outputs–byproducts of the selection of a given fragment.

Going back to the ”I like chicken” example from earlier, imagine
that although we still don’t know in advance whether that character
likes chicken or skiing, the moment they are going mention what
they like is the actual moment their preference will be se�led. Using
the exact same script, the ”LikesChicken” and ”LikesSkiing” tags
will not this time be used by the productionist do discriminate
between choosing one or the other. Instead, one will be chosen
randomly and the associated tag will be picked up by the system to
update the game state accordingly.

�is doubling of grammars as both the site of expression and of
decision making move us closer towards our aim of giving game
writers as much agency as possible. �is is in line with a lightweight
data-driven approach to game development, keeping the engine
code as general as possible and leaving the most �exibility in the
hands of designers.

5 TAGS
�e earlier chicken vs skiing examples highlight the importance
and variety of roles played by tags in this approach. In order to
allow Hammurabi’s viziers to speak and think relevantly in the
game’s varying context, we had to de�ne a number of di�erent tags
with di�erent behaviors.

5.1 ”Must Have” Tags
Some text fragments are wri�en to account for speci�c aspects of
game states and would be irrelevant if said in other contexts. For
example, let’s say we want the advisors to be able to report on
how much grain was eaten by rats in the last year. We have three
associated tags: ”rats none”, ”rats low”, rats high”. We could tag
each of the following lines accordingly:

�e rats le� us alone this year.

Rats were not worse than usual.

�e rats had a feastwith ourharvest this year!

FDG’17, August 14-17, 2017, Hyannis, MA, USA J. Lessard et al.

�ese tags are to be treated as ”Must Have”, in the sense that the
request must have ”rats none” amongst its tag set for the �rst line
to be considered a valid option. �is way, we are making sure that
if a vizier decides to talk about rats, they will say something true
about that situation (or in the least, they will be aware of what is
true if they choose to lie).

In the end, this simply amounts to a conditional: if rats none
is true, then this line is valid. It is also possible to assign tags
that are in fact evaluable expressions. In this case, the tag could
be: ”gamevars.rats==0” for ”rats none” or ”gamevars.rats¿50” for
”rats high” for example. Although this gives more granularity to
de�ne conditions for every fragment, we had initially chosen to
focus on sets of predetermined tags in order to keep things as simple
as possible. �is a�orded a clear indication to authors as to what
variables characters should ”care” about and also emphasized our
design intention to have ”fuzzier” conversation around numbers.
However, the downside to the simpler on/o� named tags is the
quick accumulation of required predetermined tags to account for
the evolution of the game system. Moving forward we intend to
implement ”expression evaluation tags” as well.

Hammurabi keeps track of many variables: grain stock, harvest
yield, king and advisor approval, rat damage, starvation, etc. Not
all text fragments are relevant to all variables at once. �is is why
text fragments need only be associated to tags relevant to their
content. In the rat example, other variables such as grain stock
or king approval, whatever their current value may be, will never
come in contradiction to these rat-speci�c fragments and can be
completely ignored in the process of selecting one of them.

5.2 ”Nice to Have” Tags
�e problem with ”Must Have” tags is that they are very strict:
fragments are discarded as soon as one of them doesn’t match the
input markup. �is poses the risk of dialogue requests returning
empty because no expression could be generated matching all the
demands. �is is not such a problem when fragments have only one
tag like in the simple rat example. However, some fragments require
more nuance. Advices, for example, o�en need to be founded on
multiple conditions. If the population and the grain is low and
we have a lot of land and the price of land high, we have a good
context to advise selling land. Creating content for all the possible
intersections of 4+ ”must have” variables is not impossible but one
would need to be entirely thorough to avoid situations of failing
content requests.

Our answer to this problem is to consider some tags to be simply
”Nice to Have”, meaning that their presence makes the current
fragment more relevant, but their absence doesn’t make it irrelevant.
Technically, this amounts to ranking fragments in terms of their
relevance. In the previous advice example, ”kingdomland high”,
”population low”, ”landprice high” and ”kingdomgrain low” can
all be set as ”Nice to Have” tags. �e more they will be present, the
be�er this advice will be, and the more likely it is to be actually said.
However, it could still be chosen with one or two of the variables
not matching for a lack of be�er available alternatives. �e author’s
responsibility is then to phrase the output in such a way that it
doesn’t assume all these to be true when the character will talk.

�e vizier could say: ”I think the stars are aligned for selling some
of our land in preparation for future challenges.”

�e ”Nice to Have” tags are also used to add nuance and �avor in
respect to advisor-related variables such as their current mood, their
opinion of the king or whether they are occupying their favored
ministry.

5.3 Output Tags
As discussed earlier in the context of embedding decision-making
into the dialogue generating grammars, tags can go both ways.
�ey can feed into the grammar as game state data to inform the
selection of text fragments; but they can also be fed back to the
system as data on what the grammar chose to say and/or do. We
call these ”Output Tags”.

Hammurabi’s main use of output tags is to record a vizier’s deci-
sion concerning their opportunity to secretly tamper with budgets–
that is either stealing or using their own treasury to supplement
insu�cient funding in order to reap public approval. Since context-
free grammars essentially act as a machine that assembles text
fragments, the output of the ”thinking grammar” is an empty ex-
pression (no text) accompanied by a number of output tags that
can look like:

steal; steal; do nothing; give; do nothing; steal
As the productionist was traversing the grammar, selecting frag-

ments according to their ”Must Have” and ”Nice to Have” tags, it
also collected the symbol’s ”Output Tags”. �is is akin to someone
internally weighing the pros and cons of di�erent courses of actions
in the light of various variables. �e game system then tallies the
tags and implements the most represented decision: steal!

Other output tags are used to change character-related variables
such as their mood, their opinion of the king and of the ministry
they are currently holding. Output tags are also part of the character
memory system which is the object of the next section.

6 CHARACTER MEMORY
One of the advantages of dialogue-tree systems is that the current
state of the conversation is never ambiguous. For every line, the
author usually has a clear idea of what was said earlier. �e down-
side of this is that any nonlinear navigation of the conversation
needs to be scripted manually. In comparison, context-free gram-
mar driven conversations are practically stateless; causing NPCs to
seem stuck in an eternal present as is o�en the case with chatbots
as well [3]. Speci�c strategies need to be devised to ensure some
form of memory or progression.

For Hammurabi, we wanted the characters to be able to change
over time and appear to remember what happened in the previous
turns: develop competence in a ministry, for example, or, on the
contrary become aggravated by being maintained many years in
an unwanted o�ce. Once again, we wanted to leave this potential
in the hand of authors. And once again, this was implemented
through the use of tags.

6.1 Custom Variables
If an author wants to develop a ”mini-story” over multiple turns,
they need a way to record that a speci�c thing was said so that their
future selves can pick up on that information and push the narrative

Striving for Author-Friendly Procedural Dialogue Generation FDG’17, August 14-17, 2017, Hyannis, MA, USA

further. Imagine a vizier in the agriculture ministry having a strong
hunch:

�e omens promise a bountiful harvest this
year, all the grain invested in agriculturewill
come back tenfold!

�e author tags this fragment with ”Memory GoodOmen”. As a
result, the system creates a new variable GoodOmen set at value 1
and all subsequent dialogue requests are accompanied by the tag
GoodOmen 1. �is allows the preparation of two other fragments
following up on whether the prediction turned out to be true or not.
�e �rst one is tagged with ”GoodOmen 1” and ”harvest high” as
”Must Haves”, and the other with ”GoodOmen 1” and ”harvest low”:

As you can see, I’m truly the expert in agri-
cultural matters

So… I �red the stupid augur who misled us
last year

From there, the author could choose to start two other threads
with other custom vars such as AgriculturalExpert or Agricultura-
lInept. A thread can also be further incremented to be developed
over more than 2 turns.

7 DISCUSSION
It is di�cult at this stage to draw conclusions on the use of metadata-
driven context-free grammars for author-friendly game dialogue
generation. Hammurabi’s development is still not over (planned for
Fall 2017), its technology is new and still in development, its game
design is new and hasn’t been assessed through play testing, and
all the people working on the project are using these concepts and
authoring techniques for the �rst time. In other words, Hammurabi
is breaking new ground on all fronts and it is hard to distinguish
structural issues inherent to the chosen approach from implemen-
tation and design issues linked to inexperience with the approach
or lack of established design pa�erns. However, we can still begin
to discern some interesting features, issues and future development
avenues.

7.1 Author-Friendliness
In the current state of things, we doubt most game writers would
qualify Expressionist and our general character dialogue script-
ing approach as particularly author-friendly. With already many
months of experience, our own authors are still sometimes puz-
zled by the peculiar logic of context-free grammars and necessity
to juggle di�erent �avors of game tags. Considering the novelty
of this whole process, it is not even clear what ”author-friendly”
precisely means in this context. Our current heuristic is that the
tools should a�ord authors to (relatively) painlessly: (1) enter new
content; (2) predict runtime behavior; (3) identify, and (4) �x errors.
Expressionist’s current interface makes the process of entering and
�xing content (#1 and #4) relatively smooth. �e main di�culty
for authors is that the mechanisms of text generation (the process
of crawling through a grammar and choosing symbols to expand)
is not exposed which makes it di�cult to conceive a clear mental
model of what is happening (#2) and eventually troubleshoot errors
(#3).

What de�nitely helped alleviate this was providing authors with
a thorough (albeit crude) visualization of the process leading to
each production:

∗∗∗∗∗∗∗∗ Expanding ChrisAdvice
Adding [[AGR]] 6 times
chosen: [[AGR]]
expanding AGR
Adding [[OPEN]]. [[AGR ADVICE]]. [[CLOSE]]. 1 times
Adding [[OPEN]]. [[AGR STATE]]. [[CLOSE]]. 2 times
chosen: [[OPEN]]. [[AGR STATE]]. [[CLOSE]].
expanding [[OPEN]]
Adding [[OPEN OPINION OFFICE]] 6 times
Adding [[OPEN OPINION KING]] 6 times
chosen: [[OPEN OPINION OFFICE]]
expanding OPEN OPINION OFFICE
Adding [[Greet]] [[King]], [[OpenComment Neutral]] 1 times
chosen: [[Greet]]
expanding Greet
Adding Hail 1 times
Adding I greet thee 1 times
chosen: Well met

…

Seeing this helped authors re�ne their understanding of context-
free grammars to both be�er predict behaviors and troubleshoot
errors. Embedded visualization tools in Expressionist (ideally aware
of game-state context) would certainly increase authors’ e�ciency.

�ough our ”one character, one grammar, one author approach”
was chosen to allow writers to freely design their character’s in-
ternal logic, the team ended up dra�ing quite elaborate grammar
templates to make sure every character covered all requirements
of the game in terms of expression and reasoning. Perhaps this
would be di�erent with seasoned authors. However, standardized
templates might also be the way to go, especially to get started.
Nothing would then stop an author to modify the given structure
or expand it once they’ve understood what it is doing.

7.2 Generativity and Modularity
One of context-free grammars’ main promise is that of generativity,
in the general sense of being able to produce more possible outputs
than they explicitly contain in their de�nition. Indeed, it is easy to
write grammars that have the potential to yield astronomical num-
bers of di�erent generations. It is one of Expressionist’s arguments
that in comparison with traditional authoring techniques, CFGs can
generate much more content for much less human labor [6]. We
have not until now been able to really make good use of this feature.
�at is not to say that we haven’t been able to write grammars
with high combinatorial potential, but mostly that these variations
didn’t feel meaningful. It is relatively simple to have many sections
of sentences vary:

[[greeting]], [[howareyou]]?[[mynameis]] Joe.
Let’s say [[greeting]] can expand into ”Hi”, ”Hello”, ”Howdy”,

”Yo”, ”Good morning”; [[howareyou]] into ”wazzup”, ”how are you”,
”how are you doing”, ”howzzit”; [[mynameis]] into ”my friends
call me”, ”my name is”, ”I’m”, etc. �is simple production rule can
indeed expand into a number of unique combinations. However,
in our a�empts, this form of variation felt in the end quite shallow.
We would generally remember the salient content of a report–the

FDG’17, August 14-17, 2017, Hyannis, MA, USA J. Lessard et al.

harvest was good–and if it were to come up again, even if the
surface phrasing would change, it would still feel repetitive. What
did feel di�erent was when we authored higher-level variations
such as: ”we’re crumbling under a ton of grain, it’s raining bushels!”
and ”the peasants worked like machines, the harvest is crazy good!”.
Technically, this means that our CFGs vary at the higher level of
phrases rather than words. A typical template will look like:

[[greeting]] [[mood comment]] [[agriculture report]]
[[performance comment]] [[goodbye]]

Each of these non-terminal symbol further splits in smaller frag-
ments but rarely reaching the granularity of words to achieve gen-
erativity at the level of actual formulation.

�is is not to say that the Expressionist approach isn’t working.
On the contrary, it did o�er a solution to our original problem of
dialogue generation. However, the e�ciency is not so much at
the level of generativity rather than that of modularity. In other
words, we have in fact set up a procedural textual assembly chain.
In their paper on the design challenges of interactive emergent
narrative [7], Ryan et al. highlight the need to elaborate strategies
that will allow textual representation of algorithmic processes. One
of their suggestions is to borrow an approach that is very common
in digital audio and visual design: ”compositional representational
strategies” based on content modularity, i.e. the breaking up of
content in small elements that can be recombined to express a wide
variety of meaningful compositions. In games, this takes the form of
repeatable textures, reusable level-design components, graphical 3D
building blocks, etc. Music is also very familiar with the sequencing
of sometimes very small units: samples. �is type of reasoning
has not really made its way to interactive writers who still seem to
hold the sentence as the smallest unit of expression, and hypertext
linking the main mechanism of assemblage.

Using Expressionist and context-free grammars forced us to think
our character’s discourse potential as fragments to be assembled
according to varying game states. �is is how we can manage
to have characters speak relevantly in a wide possibility space
without having to cater for every single intersection of speci�c
variables: each fragment cares for its own variables and are then
assembled in a string of fragments that are all relevant in their own
respects. In this light, Expressionist’s contribution might not be
so much a technical one (the underlying technology, is a�er all,
quite simple) but an invitation for authors to embrace a di�erent
authorial paradigm.

Writing textual fragments at a phrase level in order for them to
be suitable for procedural composition will require a new form of
authorial artistry, a body of writing techniques, just like designing
repeatable textures or fabric pa�erns require speci�c methods dif-
ferent from free canvas illustration. How to make a text fragment
”seamless,” suitable for varying contexts? What is the good size of
a fragment? How to think its ”borders?” Hammurabi’s approach to
dialogue generation addresses not only technical and game design
problems, but also a new body of interactive writing questions.

7.3 Tag Flow and Actual Dialogue
Acute readers will raise the objection that although this paper
frames its problem as one of dialogue generation, the game Ham-
murabi as described seems to only stage monologues–the viziers

are reporting to the king without the la�er ever answering (other
than implicitly). Actual dialogue between NPCs themselves and
with the player is part of LabLabLab’s future research. A design
intuition raised by working with the Expressionist approach is that
two characters can establish a ”tag �ow” circuit. In other words,
the output tags collected from the text generation of one character
can become the input tag for their interlocutor’s text generation,
and so on.

�is has already been successfully implemented in another proto-
type in development currently titled Les Amours de Jacques. Amongst
promising features is the possibility to either let the grammars gen-
erate a dialogue automatically, or position the player as any of the
interlocutors. To implement this interactive mode, we have the
grammars generate a number of possible lines for the player to
choose from in the form of a traditional dialogue menu.

8 CONCLUSION
Expressionist’s approach to context-free grammars opens a promis-
ing design space for games and interactives �ctions. It prompts
authors and designers to embrace a modular approach to text in
order to create virtual characters that can express themselves dy-
namically. However, this will remain a theoretical potential as long
as actual works don’t appropriate it convincingly. Hammurabi cur-
rently manages to generate monologues for its characters but has
yet to demonstrate the aesthetic value of this feature. Now that we
have a technique, our research e�orts must shi� to the domain of
design and authorship.

ACKNOWLEDGMENTS
�is research was made possible by the Research-Creation Support
Fund of �ébec’s Fonds de Recherche – Société et Culture (FRQSC).

REFERENCES
[1] David H. Ahl. Hammurabi. In Basic Computer Games, David H. Ahl (Ed.).

Microcomputer Edition, 78–79.
[2] Albert Ga� and Ehud Reiter. SimpleNLG: A Realisation Engine for Practical

Applications. In Proceedings of the 12th European Workshop on Natural Language
Generation (2009) (ENLG ’09). Association for Computational Linguistics, 90–93.

[3] Jonathan Lessard. Designing Natural-Language Game Conversations. In 1st
International Joint Conference of DiGRA and FDG (2016).

[4] Jonathan Lessard and Dominic Arsenault. �e Character as Subjective Interface.
In ICIDS 2016, Los Angeles, CA, USA, November 15-18, 2016, Proceedings 9 (2016).
Springer, 317–324. h�p://link.springer.com/chapter/10.1007/978-3-319-48279-8
28

[5] James Ryan, Michael Mateas, and Noah Wardrip-Fruin. Characters Who Speak
�eir Minds: Dialogue Generation in Talk of the Town. In Twel�h Arti�cial
Intelligence and Interactive Digital Entertainment Conference (2016-09-19). h�ps:
//www.aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/13997

[6] James Ryan, Ethan Seither, Michael Mateas, and Noah Wardrip-Fruin. Expression-
ist: An Authoring Tool for In-Game Text Generation. In Interactive Storytelling
(2016-11-15). Springer, Cham, 221–233. h�ps://link.springer.com/chapter/10.
1007/978-3-319-48279-8 20

[7] James Owen Ryan, Michael Mateas, and Noah Wardrip-Fruin. Open Design
Challenges for Interactive Emergent Narrative. In Interactive Storytelling, Henrik
Schoenau-Fog, Luis Emilio Bruni, Sandy Louchart, and Sarune Baceviciute (Eds.).
Number 9445 in Lecture Notes in Computer Science. Springer, 14–26. h�p:
//link.springer.com/chapter/10.1007/978-3-319-27036-4 2

http://link.springer.com/chapter/10.1007/978-3-319-48279-8_28
http://link.springer.com/chapter/10.1007/978-3-319-48279-8_28
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/13997
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/13997
https://link.springer.com/chapter/10.1007/978-3-319-48279-8_20
https://link.springer.com/chapter/10.1007/978-3-319-48279-8_20
http://link.springer.com/chapter/10.1007/978-3-319-27036-4_2
http://link.springer.com/chapter/10.1007/978-3-319-27036-4_2

	Abstract
	1 Introduction
	2 A POLITICAL MANAGEMENT GAME
	3 CONTEXT-FREE GRAMMARS WITH MARKUP
	3.1 Expressionist

	4 GRAMMARS
	4.1 Speaking grammars
	4.2 Thinking grammars

	5 TAGS
	5.1 "Must Have" Tags
	5.2 "Nice to Have" Tags
	5.3 Output Tags

	6 CHARACTER MEMORY
	6.1 Custom Variables

	7 DISCUSSION
	7.1 Author-Friendliness
	7.2 Generativity and Modularity
	7.3 Tag Flow and Actual Dialogue

	8 Conclusion
	Acknowledgments
	References

