Blabbeur - An Accessible Text Generation
Authoring System for Unity

No Author Given

No Institute Given

Abstract. We present Blabbeur, a generative, context-aware, text gen-
eration system for Unity. It provides a simple, accessible context-free
grammar inspired syntax allowing conditional generation and the surfac-
ing of variables. Content requests are easily invoked in Unity scripts with
relevant variables passed either as property dictionaries or through class
interfaces. A persistent testing environment allows authors to quickly
test their grammars against different contexts.

Keywords: Text generation - Context-free grammars - Authoring - Unity

1 Another Text Generation System?

In this demo paper, we present Blabbeur, a generative, context-aware, text gen-
eration system for the Unity game engine !. Blabbeur was designed for a multi-
member game development team making an emergent narrative game in Unity.
For the game, it is necessary to generate text communicating greatly varying
world states and events to players, the scale of which prevents hand-authoring.
As a result, we sought to use a text generation tool, which would meet the
following requirements:
1. Easy to author — Team members without programming background should
be able to quickly learn to create content with it.
2. Context-aware — Authors should be able to set conditions qualifying or
disqualifying text fragments. They should also be able to surface specific values
in the text.
3. Generative — The tool should easily allow for variations in the generated
text.
4. Easy to troubleshoot — Authors should be able to quickly test context
scenarios without having to wait for them to be naturally occurring in the system.
5. Compatible — It should be easy to communicate system states to the tool
and request text generations.
6. Supports collaboration — Multiple authors should be able to contribute
simultaneously.

Requirements 1, 2 and 3 are commonly found in research focused text genera-
tion systems, namely Expressionist [6], Tracery [3], and STEP [4]. We considered

! By the time of publication, the system will be made publicly available with the MIT
license

2 Anonymous

each system as a possibility for our requirements, but each system typically fell
short of one or more of requirements. Out of the three, Expressionist was the
initial clear choice, being heavily inspired by the existing functionality of Trac-
ery, but also provided the functionality of requirement 2, whereas Tracery does
not provide any built in conditional checks, or value surfacing.

The major limitation which was found with Expressionist, is that it is im-
plemented in Python, and would require a code port to Unity’s native coding
language of C#. This proved non-trivial namely due to Expressionist’s use of
the EVAL() function to evaluate conditions and effects. EVAL essentially allows
the execution of an arbitrary string as though it was a line of Python code, but
this function is not available in C# and is non-trivial to implement. STEP, being
already implemented in Unity, is an obvious alternative, but the PROLOG-like
syntax was found to be overly hard for the non-technical authors to learn.While
re-implementing may seem a trivial issue, it nonetheless highlights the different
challenges required in the actual use of text generation systems in real world
projects. Elements such as cost, differently skilled team members and integra-
tion limit the acceptance of research systems in a broader context, eg. while
Tracery is considered a successful system, it only became common use with the
development of Twitter [2] and Twine [1] integrations. We therefore, in addition
to the contribution of the tool itself, present the specifics of the Blabbeur design,
in hope that it can help other researchers or practitioners understand the more
practical side of tool development.

2 Blabbeur

In this section we present the syntax, system communication and debugging
features of Blabbeur. As stated before, the system is not particularly novel for
text generation, but rather the focus is on implementation, and the needs of a
game development team.

health points, leaving me with

I had a freak accident;

I messed up big time;
I was minding my business, when suddenly

I hurt my ydypa with a [r ol];

I suffered heatstroke from working all day under the sun;

I grabbed what I thought was my "mi , but it was a snake. It bit me;
I sprained my y t] pulling out weeds;

Fig. 1. Excerpt from a Blabbeur grammar file used to generate accident descriptions.

Blabbeur - An Accessible Text Generation Authoring System for Unity 3

Syntax A Blabbeur grammar is written as a basic text file. This has many
advantages, such as not being tied to any particular editor, and being particularly
easy to track on source control systems. Syntax was designed to be legible and
intuitive, and contains the following components:

Symbols — Grammar symbols are defined as labels followed by colons, the first one
being the point of entry (in Fig. 1,“Wiki_Accident”). Non-terminal symbols that
need to be resolved are expressed within brackets. In Fig. 1, the generation will
first resolve [description] and then [damage]. Multiple outputs of a symbol can be
defined by separating them with semicolons. In this case, the [generic_accident)
symbol can randomly resolve either as “I had a freak accident”, “I messed up
big time”, or “I was minding...”. Symbols can be nested ad infinitum.
Conditional Expressions — Authors can make a symbol conditional by preceding
it with an expression in curly braces. Only the symbols whose conditions are met
will be considered as possible outputs at the moment of generation. In Fig. 1, for
example, the author redirects the resolution of [description] by checking what
kind of accident they are dealing with. If the “TypeOfAccident” variable is set
to “agriculture”, only the second symbol will be considered valid, thus leading to
the resolution of [agriculture]. Currently, the following operators are supported:
=, ==, <, >, &&, ||

Variables — Variables that have been passed along the generation request can be
used within conditional expressions or surfaced directly within the text. This is
done by placing a condition within angle brackets. In Fig. 1, <Damage> and
<victim.healthpoints> will be replaced with the variables’ values. Values can be
numerical, strings, enumerators, or conditionals.

Comments —Any line preceded with “//” are disregarded as comments.
System Communication — The Blabbeur system is implemented as a singleton
and is accessible at any point of the project’s code. Blabbeur communication is
done through requests, passing the name of the top-level symbol of the desired
grammar, as well as a custom Blabbeur Object containing an arbitrary set of
variables describing the state of the request. The generated text is returned as
a string.

Blabbeur.Objects.PropertyDictionary blabvars = new Blabbeur.Objects.PropertyDictionary("blabvars");
blabvars.Add("Damage", Damage);

blabvars.Add("TypeOfAccident”, Typeof);

blabvars.Add("victim", actor);

return Blabbeur.TextGen.Request("Wiki_Accident", blabvars);

Fig. 2. A Blabbeur content request in C#

Blabbeur Object — A Blabbeur object is a <string,value> dictionary which matches
a variable string from the grammar to its appropriate value. It is further possible
to “nest” blabbeur objects, eg. the “victim” shown in Fig. 2, is assigned to the
actor object, which then contains its own dictionary, eg. name, age, etc.
Blabbeur Interface — Blabbeur objects can also be implemented through a C#
interface, where a class can be treated as a blabbeur object by implementing the

4 Anonymous

required functions of the interface. In Fig. 2, the actor is a “Human” class which
implements the Blabbeur interface and is therefore treated as a nested Blabbeur
object.

VEUELIE
Value

TypeOfaccident agriculture String
Damage 25 Integer

victim alice Object

Add New

Amount to Generate [Blab!

Fig. 3. The Blabbeur test environment

Testing Environment — As underlined in Lessard et al. [5] productivity with
generative text tools depends on the availability of a robust testing environment.
We have designed for Blabbeur a Unity interface allowing authors to test their
grammars against different states. Testing involves selecting a grammar and
creating or modifying custom Blabbeur objects to create a number of possible
game scenarios.

3 Conclusion

We have been using this system for months now and it has proven easy to use
and efficient. With less than an hour of training, authors can immediately begin
producing new content. We already have more than 40 grammars in our system
and they are a key component in communicating with players. As we stress test
Blabbeur, we are also noting requests and comments from authors to increase
usability, focusing on elements such as error feedback, and accessing another
grammar from within a grammar.

Blabbeur - An Accessible Text Generation Authoring System for Unity 5

References

1. Balousek, M.R.F.: Twincery. Online, https://github.com/mrfb/twinecery, last ac-
cessed 2021/06/07

2. Buckenham, G.: Cheap bots done quick. online, last accessed 2021/06/07

3. Compton, K., Kybartas, B., Mateas, M.: Interactive Storytelling, chap. Tracery: An
Author-Focused Generative Text Tool, pp. 154—161. Springer International Publish-
ing, Cham (2015)

4. Horswill, I.: Generative text using classical nondeterminism. In: Joint Proceedings
of the AIIDE 2020 Workshops. Worcester, MA (2020)

5. Lessard, J., Brunelle-Leclerc, E., Gottschalk, T., Jetté-Léger, M.A., Prouveur, O.,
Tan, C.: Striving for author-friendly procedural dialogue generation. In: Proceedings
of the International Conference on the Foundations of Digital Games - FDG ‘17.
ACM Press (2017). https://doi.org/10.1145/3102071.3116219

6. Ryan, J., Seither, E., Mateas, M., Wardrip-Fruin, N.: Interactive Storytelling, chap.
Expressionist: An Authoring Tool for In-Game Text Generation, pp. 221-233.
Springer International Publishing, Cham (2016)

